Chapter 8—Approaches and Landings

Table of Contents
Normal Approach and Landing
    Base Leg
    Final Approach
    Use of Flaps
    Estimating Height and Movement
    Roundout (Flare)
    After-Landing Roll
    Stabilized Approach Concept

Intentional Slips
Go-Arounds (Rejected Landings)
    Ground Effect

Crosswind Approach and Landing
    Crosswind Final Approach
    Crosswind Roundout (Flare)
    Crosswind Touchdown
    Crosswind After-Landing Roll
    Maximum Safe Crosswind Velocities

Turbulent Air Approach and Landing
Short-Field Approach and Landing
Soft-Field Approach and Landing

Power-Off Accuracy Approaches
    90° Power-Off Approach
    180° Power-Off Approach
    360° Power-Off Approach

Emergency Approaches and Landings (Simulated)

Faulty Approaches and Landings
    Low Final Approach
    High Final Approach
    Slow Final Approach
    Use of Power
    High Roundout
    Late or Rapid Roundout
    Floating During Roundout
    Ballooning During Roundout
    Bouncing During Touchdown
    Hard Landing
    Touchdown in a Drift or Crab
    Ground Loop
    Wing Rising After Touchdown

    Dynamic Hydroplaning
    Reverted Rubber Hydroplaning
    Viscous Hydroplaning


The 90° power-off approach is made from a base leg and requires only a 90° turn onto the final approach. The approach path may be varied by positioning the base leg closer to or farther out from the approach end of the runway according to wind conditions. [Figure 8-25]

The glide from the key position on the base leg through the 90° turn to the final approach is the final part of all accuracy landing maneuvers.

The 90° power-off approach usually begins from a rectangular pattern at approximately 1,000 feet above the ground or at normal traffic pattern altitude. The airplane should be flown onto a downwind leg at the same distance from the landing surface as in a normal traffic pattern. The before landing checklist should be completed on the downwind leg, including extension of the landing gear if the airplane is equipped with retractable gear.

After a medium-banked turn onto the base leg is completed, the throttle should be retarded slightly and the airspeed allowed to decrease to the normal base-leg speed. [Figure 8-26] On the base leg, the airspeed, wind drift correction, and altitude should be maintained while proceeding to the 45° key position. At this position, the intended landing spot will appear to be on a 45° angle from the airplane’s nose.

The pilot can determine the strength and direction of the wind from the amount of crab necessary to hold the desired ground track on the base leg. This will help in planning the turn onto the final approach and in lowering the correct amount of flaps.

Plan the base leg for wind conditions Figure 8-25. Plan the base leg for wind conditions.

At the 45° key position, the throttle should be closed completely, the propeller control (if equipped) advanced to the full increase r.p.m. position, and altitude maintained until the airspeed decreases to the manufacturer’s recommended glide speed. In the absence of a recommended speed, use 1.4 VSO. When this airspeed is attained, the nose should be lowered to maintain the gliding speed and the controls retrimmed.

The base-to-final turn should be planned and accomplished so that upon rolling out of the turn the airplane will be aligned with the runway centerline. When on final approach, the wing flaps are lowered and the pitch attitude adjusted, as necessary, to establish the proper descent angle and airspeed (1.3 VSO), then the controls retrimmed. Slight adjustments in pitch attitude or flaps setting may be necessary to control the glide

90° power-off approach Figure 8-26. 90° power-off approach.

angle and airspeed. However, NEVER TRY TO STRETCH THE GLIDE OR RETRACT THE FLAPS to reach the desired landing spot. The final approach may be made with or without the use of slips.

After the final approach glide has been established, full attention is then given to making a good, safe landing rather than concentrating on the selected landing spot. The base-leg position and the flap setting already determined the probability of landing on the spot. In any event, it is better to execute a good landing 200 feet from the spot than to make a poor landing precisely on the spot.

Previous | Next

Copyright 2012
PED Publication