Chapter 8—Approaches and Landings

Table of Contents
Normal Approach and Landing
    Base Leg
    Final Approach
    Use of Flaps
    Estimating Height and Movement
    Roundout (Flare)
    After-Landing Roll
    Stabilized Approach Concept

Intentional Slips
Go-Arounds (Rejected Landings)
    Ground Effect

Crosswind Approach and Landing
    Crosswind Final Approach
    Crosswind Roundout (Flare)
    Crosswind Touchdown
    Crosswind After-Landing Roll
    Maximum Safe Crosswind Velocities

Turbulent Air Approach and Landing
Short-Field Approach and Landing
Soft-Field Approach and Landing

Power-Off Accuracy Approaches
    90° Power-Off Approach
    180° Power-Off Approach
    360° Power-Off Approach

Emergency Approaches and Landings (Simulated)

Faulty Approaches and Landings
    Low Final Approach
    High Final Approach
    Slow Final Approach
    Use of Power
    High Roundout
    Late or Rapid Roundout
    Floating During Roundout
    Ballooning During Roundout
    Bouncing During Touchdown
    Hard Landing
    Touchdown in a Drift or Crab
    Ground Loop
    Wing Rising After Touchdown

    Dynamic Hydroplaning
    Reverted Rubber Hydroplaning
    Viscous Hydroplaning


The 360° power-off approach is one in which the airplane glides through a 360° change of direction to the preselected landing spot. The entire pattern is designed to be circular, but the turn may be shallowed, steepened, or discontinued at any point to adjust the accuracy of the flightpath.

The 360° approach is started from a position over the approach end of the landing runway or slightly to the side of it, with the airplane headed in the proposed landing direction and the landing gear and flaps retracted. [Figure 8-28]

360° power-off approach Figure 8-28. 360° power-off approach.

It is usually initiated from approximately 2,000 feet or more above the ground—where the wind may vary significantly from that at lower altitudes. This must be taken into account when maneuvering the airplane to a point from which a 90° or 180° power-off approach can be completed.

After the throttle is closed over the intended point of landing, the proper glide speed should immediately be established, and a medium-banked turn made in the desired direction so as to arrive at the downwind key position opposite the intended landing spot. At or just
beyond the downwind key position, the landing gear may be extended if the airplane is equipped with retractable gear. The altitude at the downwind key position should be approximately 1,000 to 1,200 feet above the ground.

After reaching that point, the turn should be continued to arrive at a base-leg key position, at an altitude of about 800 feet above the terrain. Flaps may be used at this position, as necessary, but full flaps should not be used until established on the final approach.

The angle of bank can be varied as needed throughout the pattern to correct for wind conditions and to align the airplane with the final approach. The turn-to-final should be completed at a minimum altitude of 300 feet above the terrain.

Common errors in the performance of power-off accuracy approaches are:

  • Downwind leg too far from the runway/landing area.
  • Overextension of downwind leg resulting from tailwind.
  • Inadequate compensation for wind drift on base leg.
  • Skidding turns in an effort to increase gliding distance.
  • Failure to lower landing gear in retractable gear airplanes.
  • Attempting to “stretch” the glide during undershoot.
  • Premature flap extension/landing gear extension.
  • Use of throttle to increase the glide instead of merely clearing the engine.
  • Forcing the airplane onto the runway in order to avoid overshooting the designated landing spot.

Previous | Next

Copyright 2012
PED Publication