Chapter 4—Slow Flight, Stalls, and Spins

Table of Contents
Slow Flight
    Flight at Less than Cruise Airspeeds
    Flight at Minimum Controllable Airspeed
    Recognition of Stalls
    Fundamentals of Stall Recovery
    Use of Ailerons/Rudder in Stall Recovery
    Stall Characteristics
    Approaches to Stalls (Imminent Stalls)—Power-On or Power-Off
    Full Stalls Power-Off
    Full Stalls Power-On
    Secondary Stall
    Accelerated Stalls
    Cross-Control Stall
    Elevator Trim Stall
    Spin Procedures
        Entry Phase
        Incipient Phase
        Developed Phase
        Recovery Phase
Intentional Spins
    Weight and Balance Requirements


With each airplane that is approved for spinning, the weight and balance requirements are important for safe performance and recovery from the spin maneuver. Pilots must be aware that just minor weight or balance changes can affect the airplane’s spin recovery characteristics. Such changes can either alter or enhance the spin maneuver and/or recovery characteristics. For example, the addition of weight in the aft baggage compartment, or additional fuel, may still permit the airplane to be operated within CG, but could seriously affect the spin and recovery characteristics.

An airplane that may be difficult to spin intentionally in the Utility Category (restricted aft CG and reduced weight) could have less resistance to spin entry in the Normal Category (less restricted aft CG and increased weight). This situation is due to the airplane being able to generate a higher angle of attack and load factor. Furthermore, an airplane that is approved for spins in the Utility Category, but loaded in the Normal Category, may not recover from a spin that is allowed to progress beyond the incipient phase.

Common errors in the performance of intentional spins are:

  • Failure to apply full rudder pressure in the desired spin direction during spin entry.
  • Failure to apply and maintain full up-elevator pressure during spin entry, resulting in a spiral.
  • Failure to achieve a fully stalled condition prior to spin entry.
  • Failure to apply full rudder against the spin during recovery.
  • Failure to apply sufficient forward-elevator pressure during recovery.
  • Failure to neutralize the rudder during recovery after rotation stops, resulting in a possible secondary spin.
  • Slow and overly cautious control movements during recovery.
  • Excessive back-elevator pressure after rotation stops, resulting in possible secondary stall.
  • Insufficient back-elevator pressure during recovery resulting in excessive airspeed.

Previous | Table of Contents

Copyright 2012
PED Publication